Sustainable high capacitance at high frequencies: metallic aluminum-polypropylene nanocomposites.

نویسندگان

  • Lisa A Fredin
  • Zhong Li
  • Michael T Lanagan
  • Mark A Ratner
  • Tobin J Marks
چکیده

The high-frequency dielectric response of 0-3 polypropylene nanocomposites prepared with the activated metallocene polymerization catalyst [rac-ethylenebisindenyl]zirconium dichlororide absorbed on the native Al(2)O(3) surfaces of metallic aluminum nanoparticles is characterized. The nanocomposites produced are randomly dispersed in the polyolefin matrix with no visible defects that might degrade film dielectric properties. Electrical measurements show that as the volume fraction of Al nanoparticles is increased, the effective permittivity of the nanocomposites increases, with ε(r) values reaching ~10 at relatively low frequency (1 MHz). Because of the high permittivity and conductivity contrast between the metal nanoparticles and the polypropylene matrix, Maxwell-Wagner-Sillars theory can be applied to model the loss at high frequencies and provide insight into how the nanocomposite high frequency response scales with Al volume fraction. At higher Al nanoparticle volume fractions, mixing theories predict greater densities of nanoparticle aggregates, consistent with the experimentally observed shift of the dielectric relaxation to lower frequencies. Although these nanocomposites undergo the predicted initial dielectric relaxation with increasing frequency, the metallic nanoparticle complex permittivity imbues the higher Al volume fraction materials with relatively high, sustainable permittivities, 6, at frequencies as high as 7 GHz.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoparticle, Size, Shape, and Interfacial Effects on Leakage Current Density, Permittivity, and Breakdown Strength of Metal Oxide-Polyolefin Nanocomposites: Experiment and Theory

A series of 0-3 metal oxide-polyolefin nanocomposites are synthesized via in situ olefin polymerization, using the following single-site metallocene catalysts:C2-symmetric dichloro[rac-ethylenebisindenyl]zirconium(IV),Me2Si( BuN)(η-C5Me4)TiCl2, and (η -C5Me5)TiCl3 immobilized onmethylaluminoxane (MAO)-treated BaTiO3, ZrO2, 3-mol%-yttria-stabilized zirconia, 8-mol%-yttria-stabilized zirconia, sp...

متن کامل

Design and Compare Sound Absorption Coefficient Nanocomposites Containing Tea Waste and Polypropylene With and Without Nanoclay

Introduction: In recent years tend to use of natural fibers has increased in making sound absorbers. Fiber-based natural materials have low density, low production costs, and are biodegradable. Material and Methods: In this study, the effect of nanoclay and the behavior of the nanocomposite specimens containing tea waste, polypropylene, and nanoclay in the sound absorption coefficient are inve...

متن کامل

Aluminum and Nickel Matrix Composites Reinforced by CNTs: Dispersion/Mixture by Ultrasonication

The main challenge in the production of metal matrix composites reinforced by carbon nanotubes (CNTs) is the development of a manufacturing process ensuring the dispersion of nanoparticles without damaging them, and the formation of a strong bond with the metallic matrix to achieve an effective load transfer, so that the maximum reinforcement effect of CNTs will be accomplished. This research f...

متن کامل

New-emerging approach for fabrication of near net shape aluminum matrix composites/nanocomposites: Ultrasonic additive manufacturing

Recently, high-performance lightweight materials with outstanding mechanical properties have opened up their way to some sophisticated industrial applications. As one of these systems, aluminum matrix composites/nanocomposites (AMCs) offer an outstanding combination of relative density, hardness, wear resistance, and mechanical strength. Until now, several additive manufacturing methods have be...

متن کامل

Flexible and conductive MXene films and nanocomposites with high capacitance.

MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. Herein, Ti3C2T(x) MXene was mixed with either a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 2013